EM-like algorithms {pmclust} | R Documentation |
The EM-like algorithm for model-based clustering of finite mixture Gaussian models with unstructured dispersions.
*.dmat
's are ddmatrix
versions.
em.step(PARAM.org) aecm.step(PARAM.org) apecm.step(PARAM.org) apecma.step(PARAM.org) kmeans.step(PARAM.org) em.step.dmat(PARAM.org) kmeans.step.dmat(PARAM.org)
PARAM.org |
an original set of parameters generated
by |
A global variable called X.spmd
should exist in the
.pmclustEnv
environment, usually the working environment. The X.spmd
is the data matrix to be clustered, and this matrix has a dimension
N.spmd
by p
.
A PARAM.org
will be a local variable inside all EM-linke functions
em.step
, aecm.step
,
apecm.step
, apecma.step
, and
kmeans.step
,
This variable is a list containing all parameters related to models.
This function also updates in the parameters by the EM-like algorithms, and
return the convergent results. The details of list elements are initially
generated by set.global
.
A convergent results will be returned the other list variable
containing all new parameters which represent the components of models.
See the help page of PARAM
or PARAM.org
for details.
Wei-Chen Chen wccsnow@gmail.com and George Ostrouchov.
High Performance Statistical Computing (HPSC) Website: http://thirteen-01.stat.iastate.edu/snoweye/hpsc/
Programming with Big Data in R Website: http://r-pbd.org/
Chen, W.-C. and Maitra, R. (2011) “Model-based clustering of regression time series data via APECM – an AECM algorithm sung to an even faster beat”, Statistical Analysis and Data Mining, 4, 567-578.
Chen, W.-C., Ostrouchov, G., Pugmire, D., Prabhat, M., and Wehner, M. (2013) “A Parallel EM Algorithm for Model-Based Clustering with Application to Explore Large Spatio-Temporal Data”, Technometrics, (revision).
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum Likelihood from Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society Series B, 39, 1-38.
Lloyd., S. P. (1982) “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28, 129-137.
Meng, X.-L. and Van Dyk, D. (1997) “The EM Algorithm.an Old Folk-song Sung to a Fast New Tune”, Journal of the Royal Statistical Society Series B, 59, 511-567.
set.global
,
mb.print
,
set.global.dmat
.
## Not run: # Save code in a file "demo.r" and run in 4 processors by # > mpiexec -np 4 Rscript demo.r ### Setup environment. library(pmclust, quiet = TRUE) comm.set.seed(123) ### Generate an example data. N.allspmds <- rep(5000, comm.size()) N.spmd <- 5000 N.K.spmd <- c(2000, 3000) N <- 5000 * comm.size() p <- 2 K <- 2 data.spmd <- generate.basic(N.allspmds, N.spmd, N.K.spmd, N, p, K) X.spmd <- data.spmd$X.spmd ### Run clustering. PARAM.org <- set.global(K = K) # Set global storages. # PARAM.org <- initial.em(PARAM.org) # One initial. PARAM.org <- initial.RndEM(PARAM.org) # Ten initials by default. PARAM.new <- apecma.step(PARAM.org) # Run APECMa. em.update.class() # Get classification. ### Get results. N.CLASS <- get.N.CLASS(K) comm.cat("# of class:", N.CLASS, "\n") ### Quit. finalize() ## End(Not run)