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Introduction to HPC and Its View from R Three Basic Flavors of Parallel Hardware
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Introduction to HPC and Its View from R Cluster Computer Architectures

Parallel Computing before Multicore

HPC “Beowulf” Clusters before 2005

Compute Nodes and Disk

Your Laptop
B
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“Little Data”Login Nodes

Software Developments:

MPI is mature, MapReduce
emerges

Parallel Libraries: PBLAS,
ScaLAPACK, PETSc, etc.

Resource Manager: PBS
mature, HADOOP emerges
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Introduction to HPC and Its View from R Cluster Computer Architectures

Multicore Emerges and Clusters become Diskless
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Introduction to HPC and Its View from R Cluster Computer Architectures

Adding NVRAM to New HPC Systems
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

“Native” Programming Models and Tools
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

R Interfaces to Low-Level Native Tools
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

R and ppppppbbbbbbddddddRRRRRR Interfaces to HPC Libraries
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Introduction to HPC and Its View from R Batch and Interactive

Data analysis is interactive!

Data reduction to knowledge

Iterative process with same data

Exploration, model construction
Diagnostics of fit and quantification of uncertainty
Interpretation

S (and R) interactive “answer” to batch data analysis

Efficient use of expensive people

Big platform computing is batch!

Libraries built for batch computing

Traditionally data generation by simulation science

Efficient use of expensive platforms
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Introduction to HPC and Its View from R Batch and Interactive

High-Level Language: Batch and Interactive Distinction Blurred.

A function is a “batch” script

R “An interactive environment to use batch scripts”

Ideal solution: Interactive Client with a Batch Server

Parallel visualization systems (VisIt and ParaView) are client-server
(batch on server)

Current ppppppbbbbbbddddddRRRRRR packages address server side (batch)

pbdCS 0.1-0 released on GitHub

Interactive SPMD
Based on ZeroMQ distributed messaging (pbdZMQ 0.1-1 on CRAN)
Bridge resource manager (pbdSCHED 0.1-0 on GitHub)
Site configuration file
Manage relationship of big data (server side) to little data (client side)
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Introduction to HPC and Its View from R Programming Models

Manager-Workers

A serial program (Manager) divides up work and/or data

Workers run in parallel without interaction

Manager collects/combines results from workers

Divide-Recombine fits this model
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Introduction to HPC and Its View from R Programming Models

MapReduce

A concept born of a search engine

Decouples certain coupled problems with an intermediate
communication - shuffle

User writes two serial codes: Map and Reduce
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Introduction to HPC and Its View from R Programming Models

MapReduce: a Parallel Search Engine Concept

Search MANY documents Serve MANY users
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Introduction to HPC and Its View from R Programming Models

Can use different sets of processors
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Introduction to HPC and Its View from R Programming Models

MPI and MapReduce

Both Concepts are about Communication

One makes communication explicit, gives choices

The other hides communication, gives one choice (shuffle)

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 15/43



Introduction to HPC and Its View from R Programming Models

SPMD: Single Program Multiple Data

The prevalent way of distributed programming

Can handle tightly coupled parallel computations

It is designed for batch computing

There is usually no manager - rather, all cooperate

Prime driver behind MPI specification
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Introduction to HPC and Its View from R Programming Models

Early SPMD Work in Statistics: Crossproduct (Row-Block)

Hypercube: Individual send() and recv() over each dimension

Ostrouchov (1987). Parallel Computing on a Hypercube: An overview of the architecture and

some applications. Proceedings of the 19th Symposium on the Interface of Computer Science

and Statistics, p.27-32.
ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 17/43



Introduction to HPC and Its View from R Programming Models

Simplified with MPI (and further with pbdMPI)

A = reduce(X’X)

A = allreduce(X’X)

Architecture-specific vendor optimizations

Cray MPT

SGI MPT
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Introduction to HPC and Its View from R Programming Models

Data-flow: Parallel Runtime Scheduling and Execution
Controller (PaRSEC)

Graphic from icl.cs.utk.edu

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J. ”PaRSEC: Exploiting Heterogeneity to Enhance
Scalability,” IEEE Computing in Science and Engineering, Vol. 15, No. 6, 36-45, November, 2013.

Master data-flow controller runs distributed on all cores.

Dynamic generation of current level in flow graph

Effectively removes collective synchronizations
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pbdR The pbdR Project

ppppppbbbbbbddddddRRRRRR Interfaces to Libraries: Sustainable Path
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Why use HPC libraries?

The libraries represent 30+ years of research by the HPC community

They’re tested. They’re fast. They’re scalable.

Many science communities are invested in their API.

HPC Simulation Science uses much of the same math as data analysis
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pbdR pbdMPI

pbdMPI: Simplified, Extensible, and Fast Communication Operations

S4 methods for collective communication: extensible to other R
objects.

Default methods (like Robj in Rmpi) check for data type: safe for
general users.

API is simplified: defaults in control objects.

Array and matrix methods without serialization: faster than Rmpi.

pbdMPI (S4) Rmpi
allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
allreduce mpi.allreduce

bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj
reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj
send mpi.send, mpi.send.Robj
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pbdR pbdMPI

Integer? Not always obvious in R.

1 > is.integer (1)

2 [1] FALSE

3 > is.integer (2)

4 [1] FALSE

5 > is.integer (1:2)

6 [1] TRUE

pbdMPI lets R figure it out

Rmpi

1 # int

2 mpi.allreduce(x, type =1)

3 # double

4 mpi.allreduce(x, type =2)

pbdMPI

1 allreduce(x)
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pbdR pbdMPI

Single Program (SPMD): Runs Asynchronous Parallel

Rank Query Example

1 rank.r

1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 my.rank <- comm.rank()

5 comm.print(my.rank , all.rank=TRUE)

6

7 finalize ()

Execute this batch script via:

1 mpirun -np 2 Rscript 1_rank.r

Sample Output:

1 COMM.RANK = 0

2 [1] 0

3 COMM.RANK = 1

4 [1] 1
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pbdR pbdDMAT

Mapping a Matrix to Processors

Processor Grid Shapes

[
0 1 2 3 4 5

]

(a) 1 × 6

[
0 1 2
3 4 5

]

(b) 2 × 3




0 1
2 3
4 5




(c) 3 × 2




0
1
2
3
4
5




(d) 6 × 1

Table: Processor Grid Shapes with 6 Processors
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pbdR pbdDMAT

2×3 block-cyclic grid on 6 processors: Global view “ddmatrix” class

x =
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pbdR pbdDMAT

2×3 block-cyclic grid on 6 processors: Local view “ddmatrix” class
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pbdR pbdDMAT

ppppppbbbbbbddddddRRRRRR Example Syntax

1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 x.pca <- prcomp(x)

4 xtx <- t(x) %*% x

5 ans <- svd(solve(xtx))

The above (and over 100 other functions) runs on 1 core with R
or 10,000 cores with ppppppbbbbbbddddddRRRRRR ddmatrix class

1 > showClass("ddmatrix")

2 Class "ddmatrix" [package "pbdDMAT"]

3 Slots:

4 Name: Data dim ldim bldim ICTXT

5 Class: matrix numeric numeric numeric numeric

1 > x <- as.rowblock(x)

2 > x <- as.colblock(x)

3 > x <- redistribute(x, bldim=c(8, 8), ICTXT = 0)
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pbdR pbdDMAT

pbdDMAT Scalability Benchmarks

Default choices throughout (no MKL, ACML, etc.)

1 core = 1 MPI process (Kraken: 6-core Opterons)

Generate random matrix

Global Columns: 500, 1000, and 2000
Global Rows: fixed per core to make 43.4MiB

Measure wall clock time

“weak scaling” = global problem grows with core count
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pbdR pbdDMAT

pbdDMAT Scalability Benchmarks

1 x <- ddmatrix("rnorm",

nrow=n, ncol=p)

2 cov.x <- cov(x)
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Matrix Exponentiation (pbdDMAT)

Fitting biogeography models requires many
matrix exponentiations

Benchmark: Matrix exponential of
5000×5000 matrix.

R 3.1.0, Matrix 1.1-2, rexpokit 0.25,
pbdDMAT 0.3-0

Libs: Cray LibSci, NETLIB ScaLAPACK,
Compilers: gnu 4.8.2

Configuration: 1 thread == 1 MPI rank ==
1 physical core

Schmidt and Matzke (2014) Distributed matrix exponentiation, The R User Conference (UseR! 2014),

Los Angeles, CA, August 2014 .
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Randomized truncated SVD1
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Prototype for Randomized SVD
Given an m × n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization UΣV ∗, where U and V are orthonormal, and Σ is
nonnegative and diagonal.
Stage A:
1 Generate an n× 2k Gaussian test matrix Ω.
2 Form Y = (AA∗)qAΩ by multiplying alternately with A and A∗.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q∗A.
5 Compute an SVD of the small matrix: B = ŨΣV ∗.
6 Set U = QŨ .
Note: The computation of Y in step 2 is vulnerable to round-off errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A∗; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error ‖A − QQ∗A‖ does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method offers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this difficulty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually suffices in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is efficient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult +O(k
2(m+ n)),

where Tmult is the flop count of a matrix–vector multiply with A or A∗. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m × n matrix. Select an exponent q
and a target number k of singular vectors, where 2 ≤ k ≤ 0.5min{m,n}. Execute the
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Algorithm 4.3: Randomized Power Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � Gaussian random matrix Ω.
2 Form the m× � matrix Y = (AA∗)qAΩ via alternating application

of A and A∗.
3 Construct an m× � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-off errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � standard Gaussian matrix Ω.
2 Form Y0 = AΩ and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form Ỹj = A∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j .

5 Form Yj = AQ̃j and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with ‖A‖. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) ‖A‖ is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A∗. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m× n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product AΩ. When the test matrix

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− matrix(rnorm(n*2*k),
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q( qr (Y) )
8 At <− t (A)
9 f o r ( i i n 1 : q )

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q( qr (Y) )
13 Y <− A %∗% Q
14 Q <− qr .Q( qr (Y) )
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[ , 1 : k ]
22 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions SIAM Review 53 217–288
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Randomized truncated SVD

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− m a t r i x ( rnorm ( n∗2∗k ) ,

nrow=n , n c o l=2∗k )
5 Y <− A %∗% Omega
6 Q <− qr .Q( qr (Y) )
7 At <− t (A)
8 f o r ( i i n 1 : q )
9 {

10 Y <− At %∗% Q
11 Q <− qr .Q( qr (Y) )
12 Y <− A %∗% Q
13 Q <− qr .Q( qr (Y) )
14 }
15
16 ## Stage B
17 B <− t (Q) %∗% A
18 U <− La . svd (B) $u
19 U <− Q %∗% U
20 U[ , 1 : k ]
21 }

Parallel pbdR

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− ddmatrix(”rnorm”,
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q( qr (Y) )
8 At <− t (A)
9 f o r ( i i n 1 : q )

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q( qr (Y) )
13 Y <− A %∗% Q
14 Q <− qr .Q( qr (Y) )
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[ , 1 : k ]
22 }
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From journal to scalable code and scaling data in one day.
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pbdR pbdMPI Example: Random Forest Prediction

Letter Recognition Data

Example 1: Letter Recognition data from package mlbench (20,000 × 17)

1 [,1] lettr capital letter

2 [,2] x.box horizontal position of box

3 [,3] y.box vertical position of box

4 [,4] width width of box

5 [,5] high height of box

6 [,6] onpix total number of on pixels

7 [,7] x.bar mean x of on pixels in box

8 [,8] y.bar mean y of on pixels in box

9 [,9] x2bar mean x variance

10 [,10] y2bar mean y variance

11 [,11] xybar mean x y correlation

12 [,12] x2ybr mean of x^2 y

13 [,13] xy2br mean of x y^2

14 [,14] x.ege mean edge count left to right

15 [,15] xegvy correlation of x.ege with y

16 [,16] y.ege mean edge count bottom to top

17 [,17] yegvx correlation of y.ege with x

P. W. Frey and D. J. Slate (Machine Learning Vol 6/2 March 91): ”Letter Recognition Using Holland-style Adaptive Classifiers”.
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Example 1: Random Forest Algorithm

1 Build simple regression trees from random subsets of columns

2 Use model averaging for prediction
3 Package randomForest has a combine() function that enables the

following parallel approach:
1 Everyone gets the same training data
2 Split regression tree building among processors (randomForest)
3 Use allgather to bring built predictors to all
4 Everyone combine predictors
5 Split prediction work by blocks of rows
6 Use allreduce to assess prediction

4 Steps (3) and (4) can be improved with a custom reduce/combine to
take advantage of MPI vendor optimizations
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pbdR pbdMPI Example: Random Forest Prediction

Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Serial Code 4 rf s.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition) # 26 Capital Letters Data 20,000 x 17

4 set.seed(seed =123)

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test , ]

9 test <- LetterRecognition[i_test , ]

10

11 ## train random forest

12 rf.all <- randomForest(lettr ~ ., train , ntree =500,

norm.votes=FALSE)

13

14 ## predict test data

15 pred <- predict(rf.all , test)

16 correct <- sum(pred == test$lettr)

17 cat("Proportion Correct:", correct/(n_test), "\n")
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Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Parallel Code 4 rf p.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition)

4 comm.set.seed(seed =123, diff=FALSE) # same training data

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test , ]

9 test <- LetterRecognition[i_test , ][get.jid(n test), ]

10

11 comm.set.seed(seed=1e6*runif(1), diff=TRUE)

12 my.rf <- randomForest(lettr ~ ., train , ntree =500%/%comm.size(),

norm.votes=FALSE)

13 rf.all <- do.call(combine, allgather(my.rf))

14

15 pred <- predict(rf.all , test)

16 correct <- allreduce(sum(pred == test$lettr))

17 comm.cat("Proportion Correct:", correct/(n_test), "\n")
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Runs serial or on any number of cores

1 [beacon -login2 stats]$ time Rscript 4 rf s.r

2 Proportion Correct: 0.96725

3 real 0m49.028s user 0m48 .626s sys 0m0.335s

4 [beacon -login2 stats]$ time Rscript 4 rf p.r

5 Proportion Correct: 0.96425

6 real 0m52.634s user 0m51 .914s sys 0m0.598s

7 [beacon -login2 stats]$ time mpirun -np 2 Rscript 4 rf p.r

8 Proportion Correct: 0.96425

9 real 0m28.349s user 0m54 .570s sys 0m1.070s

10 [beacon -login2 stats]$ time mpirun -np 4 Rscript 4 rf p.r

11 Proportion Correct: 0.963

12 real 0m16.380s user 1m1.559s sys 0m1.664s

13 [beacon -login2 stats]$ time mpirun -np 8 Rscript 4 rf p.r

14 Proportion Correct: 0.963

15 real 0m11.010s user 1m19 .301s sys 0m3.421s

16 [beacon -login2 stats]$ time mpirun -np 16 Rscript 4 rf p.r

17 Proportion Correct: 0.9635

18 real 0m10.655s user 2m32 .508s sys 0m6.624s

19 [beacon -login2 stats]$ time mpirun -np 32 Rscript 4 rf p.r

20 Proportion Correct: 0.96325

21 real 0m21.692s user 4m44 .114s sys 0m20 .179s
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fda.usc Package

Profiling min.basis()

1 > summaryRprof ()

2 $by.total

3 total.time total.pct self.time self.pct

4 "min.basis" 12.32 100.00 0.00 0.00

5 "type.CV" 6.54 53.08 0.02 0.16

6 "S.basis" 5.76 46.75 0.00 0.00

7 "drop" 4.20 34.09 0.00 0.00

8 "norm.fdata" 4.20 34.09 0.00 0.00

9 "metric" 4.18 33.93 1.04 8.44

10 "%*%" 3.98 32.31 3.98 32.31

11 "getbasispenalty" 2.72 22.08 0.02 0.16

12 "bsplinepen" 2.68 21.75 0.36 2.92

13 "int.simpson2" 2.54 20.62 1.96 15.91

14 "t" 2.10 17.05 0.10 0.81

15 "ppBspline" 1.60 12.99 0.82 6.66

16 . . .
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Example: min.basis() 110 lines SPMD: Add 5, change 3

1 min.basis <- function(fdataobj , type.CV = GCV.S, . . ., ...)

2 {

3 . . . 13 lines

4 library(pbdMPI)

5 init()

6 my.k <- get.jid(lenlambda)

7 my.gcv <- array(Inf , dim = c(lenbasis , length(my.k)))

8 . . . 36 lines

9 for (i in 1: lenbasis) {

10 . . . 3 lines

11 for (k in my.k) {

12 S2 <- S.basis(tt, base , lambda[k])

13 my.gcv[i, k - my.k[1] + 1] <-

14 type.CV(fdataobj , S = S2, W = W, trim =

par.CV$trim , draw = par.CV$draw , ...)

15 }

16 }

17 gcv <- do.call(cbind, allgather(my.gcv))

18 finalize()

19 . . . 48 lines
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pbdCS Client-Server Demo

0MQ

Some explanation goes here The demo goes here
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4 Future Work
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Future Work

Future Work

Second year of a 3 year NSF grant to

Bring back interactivity via client/server (pbdCS 0.1-0)
Simplify parallel data input
Begin DPLASMA integration
Outreach to the statistics community

DOE funding: In-situ or staging use with simulations

Machine learning from fusion simulation data

Collaboration wishlist

RDD, HDFS, etc., file readers
Communicator integration with SparkR or Spark
Communicator integration with VisIt and ParaView
pbdCS integration with RStudio IDE
Instrumentation of various R packages with pbdR
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Future Work

Where to learn more?

http://r-pbd.org/

pbdDEMO vignette

Googlegroup:RBigDataProgramming
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