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Introduction to HPC and Its View from R
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Introduction to HPC and Its View from R Three Basic Flavors of Parallel Hardware

@ Introduction to HPC and Its View from R
@ Three Basic Flavors of Parallel Hardware

R
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Introduction to HPC and Its View from R Three Basic Flavors of Parallel Hardware

Cores and Co-Processors to Nodes

Distributed Memory

Interconnection Network

Co-Processor

Shared Memory Local Memory

CORE CORE CORE
+ cache + cache +cache

Network

Memory

1/43
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Introduction to HPC and Its View from R Cluster Computer Architectures

@ Introduction to HPC and Its View from R

o Cluster Computer Architectures

R
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Introduction to HPC and Its View from R Cluster Computer Architectures

Parallel Computing before Multicore

HPC “Beowulf” Clusters before 2005

Co te Nodes and Disk
Login Nodes

Big Data

>- Your Laptop  “Little Data”

Software Developments:

MPI is mature, MapReduce
emerges

Parallel Libraries: PBLAS,
ScalLAPACK, PETSc, etc.

Resource Manager: PBS
mature, HADOOP emerges

¥River
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Introduction to HPC and Its View from R Cluster Computer Architectures

Multicore Emerges and Clusters become Diskless

"“.!.fi.ﬁf"e/@ Parallel
2005-2015 HPC Cluster @ File System

ENENEEE—— 0 00
[ | — B 00
EESENNEEE — B 00
HEN

]

. H 00 Software Developments
ERREEEE — N 00 °
penMP, CUDA, OpenCL,
- . .. OpenACC
. .. Libraries: PLASMA,
B —— B o0 MAGMA, CuBLAS

1/O Nodes Storage
Servers

Big Data

Disk
. Your Laptop  “Little Data”
¥R
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Introduction to HPC and Its View from R Cluster Computer Architectures

Adding NVRAM to New HPC Systems

Muicicore (Ji
Today’s HPC Cluster /Q .Parallel
File System

DaanNEEE -~ H 00
1 5 ) = H 00

AEEEE — N o0 Software Developments
501 (5 (5 ) 5 (5 M n 00 L ibrarice.
ibraries: DPLASMA,
H 00 CombBLAS
HADOOP fades, Spark
H 00 .
. .. emerges

Big Data

Storage .
Servers Disk
“Little Data”
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

@ Introduction to HPC and Its View from R

@ A Quick Overview of Parallel Software
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

“Native” Programming Models and Tools

Sockets

Default is parallel (SPMD): what is my d
and what do | need from others?

MPI
MapReduce

Distributed Memory

Interconnection Network

oc PROC oc
i i M.J

“TT17

Shared Memory

Network

Memory

Offload data and tasks.
We are slow but many!

Co-Processor

CUDA
OpenCL
OpenACC
OpenMP
Pthreads

GPU: Graphical Proceséing Unit
MIC™Many,Integratéd Core

Default is serial: which tasks can fork
the compiler make parallel?

Core Team = Harnessing HPC Research for R



Introduction to HPC and Its View from R A Quick Overview of Parallel Software

Distributed Programming Works in Shared Memory

Sockets

Default is parallel (SPMD): what is my d " MRP(Ii
and what do | need from others? A

We are slow but many?

CUDA
Local Memory OpenCL

CORE CORE GPU: Graphical Processing Unit OpenACC
e SeED MIC: Many Integratéd Core Openlik
Pthreads

Network

Default is serial: which tasks can fork
Memory the compiler make parallel?
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Introduction to HPC and Its View from R A Quick Overview of Parallel Software

R Interfaces to Low-Level Native Tools

Default is parallel (SPMD): what is my data
and what do | need from others?
Distributed Memory e,

Interconnection Network

+eache +cache. + cache + cache
Offload data and tasks.
A We are slow but many!
CUDA
Shared Memory OpenCL
core core core ClmLEe
+cache. +eache * cache. Cppeilil
Pthreads
Network fork
Memory

OAK

[© snow + multicore = parallel
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Introduction to HPC and Its View from R

A Quick Overview of Parallel Software

R and Interfaces to HPC Libraries

Profiling

ScaLAPACK
PBLAS

Co-Processor

@ PAPI

170

LibSci (Cray)

DPLASMA
MKL (Intel)

@
PLASMA -
phing Unit ADIOS Ny
pbdADIOS
\

()
cuBLAS (NVIDIA) Learning

NetCDF4

e
()

Released = =m===s Under Development
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Introduction to HPC and Its View from R Batch and Interactive

@ Introduction to HPC and Its View from R

@ Batch and Interactive

¥R
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Introduction to HPC and Its View from R Batch and Interactive

Data analysis is interactive!

o Data reduction to knowledge

o lterative process with same data

o Exploration, model construction
o Diagnostics of fit and quantification of uncertainty
o Interpretation

o S (and R) interactive “answer” to batch data analysis

o Efficient use of expensive people

Big platform computing is batch!

o Libraries built for batch computing

o Traditionally data generation by simulation science

o Efficient use of expensive platforms

%O/\K
RIDGE
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Introduction to HPC and Its View from R Batch and Interactive

High-Level Language: Batch and Interactive Distinction Blurred.

o A function is a “batch” script

@ R “An interactive environment to use batch scripts”

Ideal solution: Interactive Client with a Batch Server

o Parallel visualization systems (Vislt and ParaView) are client-server
(batch on server)

o Current pbdR packages address server side (batch)
o pbdCS 0.1-0 released on GitHub

o Interactive SPMD

Based on ZeroMQ distributed messaging (pbdZMQ 0.1-1 on CRAN)
Bridge resource manager (pbdSCHED 0.1-0 on GitHub)

Site configuration file

Manage relationship of big data (server side) to little data (client side)

%()AK
RIDGE
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Introduction to HPC and Its View from R Programming Models

@ Introduction to HPC and Its View from R

o Programming Models

¥R
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Introduction to HPC and Its View from R Programming Models

Manager-Workers

o A serial program (Manager) divides up work and/or data
o Workers run in parallel without interaction
o Manager collects/combines results from workers

o Divide-Recombine fits this model

¥oux
Ribor

Core Team | Harnessing HPC Research for R 11/43




Introduction to HPC and Its View from R Programming Models

MapReduce

o A concept born of a search engine

o Decouples certain coupled problems with an intermediate
communication - shuffle

@ User writes two serial codes: Map and Reduce

¥oux
Ribor
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Introduction to HPC and Its View from R Programming Models

MapReduce: a Parallel Search Engine Concept

Search MANY docume

Web pO
Pages p1
(records) p2
p3

Index Words (keys)

Serve MANY users

Web Pages (records)

Al A A3 A Shuffle Index o [ A1 B1 G D
Bl 32 B3 B4 — Words pl A2 B2 C2 D2
G G G G MPI_Alltoallv (keys) p2 A3 B3 G D3
D1 Dy D3 Dy P3| Ay By G4 Dy
Matrix transpose in another language?
¥R

Core Team  Harnessing HPC Research for R
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Introduction to HPC and Its View from R Programming Models

Can use different sets of processors

Index Words (keys)

Streaming Web Pages (records)

Web p0 Index p4 B

Pages p1 By B, Bs B Sllﬂ:le Words p5 B,

(records) p2 (keys) p6 Bs
MPI_Scatter

p3 p7 By

Core Team | Harnessing HPC Research for R 14/43



Introduction to HPC and Its View from R Programming Models

MPI and MapReduce

Both Concepts are about Communication

@ One makes communication explicit, gives choices

@ The other hides communication, gives one choice (shuffle)

Core Team = Harnessing HPC Research for R



Introduction to HPC and Its View from R Programming Models

SPMD: Single Program Multiple Data

The prevalent way of distributed programming
Can handle tightly coupled parallel computations
It is designed for batch computing

There is usually no manager - rather, all cooperate
Prime driver behind MPI specification

*’O/\K
Ribor
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Introduction to HPC and Its View from R Programming Models

Early SPMD Work in Statistics: Crossproduct (Row-Block)

o 1 2 3 4 5 6 1 STEP 0o 1 3 4 5 § 7  STEP
(000) (001) (010) (011) (100) (101} (110) (111) TIME (000) (001) (010) (011) (100) (101} (110) (111) TIME
J]K. JIK; 7|Ks Xy J‘fs Jlk Jl‘v X 7]‘-1 Jltz 7Fl fi X5 X X 3I‘s
SRR S
] ] 1 1 ] ] ] ap? ' | | 1 | ] | ' Fy
A A A A A A A A iy A A A A A A A A B,
H i 1 | | I 1 1 | 1 1 t
S e X X X e
I ] 1
Alu Ay A}“ Agy Yaply Alxz Alm &\‘:4 ke Alas A\Iss Alaa A Weply
] ]
:’/ :/ wsptp :>:§§'<i '% wrpa
i 1 N '
A}'m Ay ap®y ﬂ:m A L::zu R A 1678 a Aign  Wip®y
1 1 | -0
! / ‘*"A&st E%i orws
A hpty AT AT A A SA TNA TR mpty
Fic. 4. Computation of A = X'X on an 8-processar hypercube, Fig. 6. Computation of A = X'X on an. & h 3
with final result on processor 0. ! procsssar hyperaube

with final result on alf processors.

Hypercube: Individual send() and recv() over each dimension

Ostrouchov (1987). Parallel Computing on a Hypercube: An overview of the architecture and

some applications. Proceedings of the 19th Symposium on the Interface of Computer Science
and Statistics, p.27-32.
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Introduction to HPC and Its View from R Programming Models

Simplified with MPI (and further with pbdMPI)

0 1 2 3 4 5 6 7 STEP 0 1 2 3 4 5 6 7 STEP
(000) (001) (010) (011) (100) (101) (110) (111) TIME (000) (001) (010) (011) (100) (101} (110) (111) TIME
7‘(1 7$2 ’I(s ?4 Xs ‘l(e 7f7 }‘(n :'r(l X,
I | | 1 i 1 1 | I !
) i i i H : i ! 2
Ay Az Ay Ay As Ag Aq Ag whE Y
| 1 ] 1) / r
U < 1 / 1 i/
| / ' | I o+ Yp?B
/ "4 [ ’ 5
A Asq A My Yap©y
! A dute o4
/ 2
| K = el a+ipif
1.~ ”/'
» !
Aine Agrs wp?y
| .-
: ,,»”/ at ‘ﬁp’ B
] il
-
A Yip?y A wply
Fic. 4. Computation of A = X'X on an 8-processar hypercube, Fio. 6. Computation of A = X'X on an 8-processor hypercube,
with final result on processor 0.

with final result on all processors.

o Cray MPT
o SGI MPT

Wl
18/43
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Introduction to HPC and Its View from R Programming Models

Data-flow: Parallel Runtime Scheduling and Execution

Controller (PaRSEC)

EFFICIENT DATA FLOW
REPRESENTATION

PAST s
K PO GE

2

Supports Distributed Heterogeneous Platforms \ A " S
Sustained Performance / \ /

NUMA & Cache Aware Scheduling et .\ =
State-of-the-art Algorithms

Capacity Level Scalability .\

Performance Portability .\ (Nodeo
Implicit Communication FUTURE @D
Communication Overlapping 'l' :

Graphic from icl.cs.utk.edu

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J. "PaRSEC: Exploiting Heterogeneity to Enhance

Scalability,” IEEE Computing in Science and Engineering, Vol. 15, No. 6, 36-45, November, 2013.

@ Master data-flow controller runs distributed on all cores.
@ Dynamic generation of current level in flow graph

o Effectively removes collective synchronizations

Core Team | Harnessing HPC Research for R 19/43
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pbdR The pbdR Project

(2 IR

@ The pbdR Project

R
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pbdR The pbdR Project

Interfaces to Libraries: Sustainable Path

Profiling

—

Co-Processor

LibSci (Cray)
MKL (Intel)

DPLASMA

ACML (AMD)

cuBLAS (NVIDIA)
cuSPARSE (NVIDIA)

Learning

Why use HPC libraries?

@ The libraries represent 30+ years of research by the HPC community
@ They're tested. They're fast. They're scalable.
@ Many science communities are invested in their API.

@ HPC Simulation Science uses much of the same math as data analysis

C

Team  Harnessing HPC Reseal
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pbdR | pbdMPI

(2 IR

o pbdMPI

¥R
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pbdR | pbdMPI

pbdMPI: Simplified, Extensible, and Fast Communication Operations

@ S4 methods for collective communication: extensible to other R
objects.

o Default methods (like Robj in Rmpi) check for data type: safe for
general users.

o APl is simplified: defaults in control objects.

o Array and matrix methods without serialization: faster than Rmpi.

pbdMPI (S4)  Rmpi

allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
allreduce mpi.allreduce

bcast mpi.bcast, mpi.bcast.Robj

gather mpi.gather, mpi.gatherv, mpi.gather.Robj

recv mpi.recv, mpi.recv.Robj

reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj

send mpi.send, mpi.send.Robj

ur
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pbdR | pbdMPI

Integer? Not always obvious in R.

> is.integer (1)
[1] FALSE

> is.integer (2)
[1] FALSE

> is.integer (1:2)
[1] TRUE

S O A W N

pbdMPI lets R figure it out

Rmpi pbdMPI
1|# int 1|a11reduce(x) |
2| mpi.allreduce(x, type=1)
3|# double
4

mpi.allreduce(x, type=2)

%O/\K
RIDGE

or
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pbdR | pbdMPI

Single Program (SPMD): Runs Asynchronous Parallel

Rank Query Example

1_rank.r

library (pbdMPI, quiet = TRUE)
init ()

my .rank <- comm.rank ()
comm.print (my.rank, all.rank=TRUE)

N o o W N

finalize ()

Execute this batch script via: Sample Qutput:
1| mpirun -np 2 Rscript 1_rank.r 1| COMM.RANK = 0
2| [1] o
3| COMM.RANK = 1
4| [1] 1

or
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pbdR  pbdDMAT

(2 IR

o pbdDMAT

¥R
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pbdR  pbdDMAT

Mapping a Matrix to Processors

Processor Grid Shapes

0
[0 1 2 3 4 5] 1
2
0 1 3
01 2 2 3 4
[3 4 5] 4 5 EN
(2)1x6 (b)2x 3 (c)3x2 (d)6x1

Table: Processor Grid Shapes with 6 Processors

*‘O/\K
Ribor
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pbdR  pbdDMAT

2x3 block-cyclic grid on 6 processors: Global view “ddmatrix” class

X11 X12 | X13  X14 | X15 Xip | X17 X18 | X19
X21 X2 | X203 X4 | Xo5  Xop | X207  X28 | X29
X31 X32 | X33 X34 | X35 X36 | X37 X38 | X39
X41 Xa2 | X43  Xa4 | X45  Xae | X47 X48 | X49
X = X51 X52 | X53 X54 | X55 X56 | X57 X5g | X59
X6l X2 | X63 Xb64 | X65 X66 | X67 X68 | X69
X71 X72 | X173 X74 | X75  X76 | X77  X78 | X79
Xg1 Xg2 | X383 X84 | Xg5 X386 | X87 X88 | X89
Xg1 X2 | X93 Xo4 | Xo5 Xo6 | Xo7 Xo8 | X909 g o

N

Processor grid = ‘ g

%()AK
RIDGE
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pbdR  pbdDMAT

2x 3 block-cyclic grid on 6 processors:

Local view “ddmatrix” class

X111 X12 | X17  X18 X13  X14 | X19 X15  X16
X1 X22 | Xo1  Xog X23  X24 | X29 X25  X26
X51  X52 | X57  Xs5g X53  X54 | X59 X55  X56
X61  X62 | X67  X68 X63  X64 | X69 X65  X66
L Xo1 X902 | Xg7 Xo8 [g. ., L X03 X04 | Xo9 [ 4 | X05 X06 g o
X31  X32 | X37  X38 X33 X34 | X39 X35 X36
Xa1  Xa2 | X471 Xa3 X43  Xaq | Xa9 X45  Xa6
X1 X72 | X771 X718 X73  X74 | X79 X75 X716
L X81 X82 | X87 X88 | ,.4 L X83 X84 | X89 1,3 L X85 X86 |40
1 2 (0,0) (0,1) (0,2)
Processor grid = ‘ = ' ' '
3 45 (1,00 (1,1) (1,2)
LR
or

Core Team
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Example Syntax

1|x <- x[-1, 2:5]
2|x <- log(abs(x) + 1)
3| x.pca <- prcomp(x)
4l xtx <- t(x) %*%h x
5| ans <- svd(solve(xtx))
The above (and over 100 other functions) runs on 1 core with R
or 10,000 cores with pbdR ddmatrix class
1|> showClass ("ddmatrix")
2| Class "ddmatrix" [package "pbdDMAT"]
3| Slots:
4| Name : Data dim ldim bldim ICTXT
5(Class: matrix numeric numeric numeric numeric

fun

> x <- as.rowblock(x)
> x <- as.colblock(x)
3|> x <- redistribute(x, bldim=c(8, 8), ICTXT = 0)

N
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pbdDMAT Scalability Benchmarks

o Default choices throughout (no MKL, ACML, etc.)

o 1 core = 1 MPI process (Kraken: 6-core Opterons)

o Generate random matrix

o Global Columns: 500, 1000, and 2000
o Global Rows: fixed per core to make 43.4MiB

(]

Measure wall clock time

(+]

“weak scaling” = global problem grows with core count
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pbdDMAT Scalability Benchmarks

1|b <- ddmatrix("runif", nrow=p,
ncol=1)

. 2 <- x %*% Db
1|x <- ddmatrix("rnorm", y o X .
3/ b.hat <- Im.fit(x, y)$coefficients
nrow=n, ncol=p)
o <- 5 g
2fcov.x cov (x) 7 Predictors == 500 == 1000 == 2000 Sl
29 Predictors === 500 === 1000 == 2000 B
2134 52 85.35 170.7
10
2 g
H s
8° é
: =
& 4268 1707 34141 é

8535
o 2 S I

74 34141
21344268 8535 170.7

v ' ' '
504 1008 2016 4032
Cores
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pbdR | pbdDMA

Matrix Exponentiation (pbdDM

@ Fitting biogeography models requires many
matrix exponentiations

Wal-Ciock Time in Seconds (Lower s Beteer) L2 Cache Misses (Lower is Better)

@ Benchmark: Matrix exponential of
5000 % 5000 matrix.

@ R 3.1.0, Matrix 1.1-2, rexpokit 0.25,
pbdDMAT 0.3-0 -
Libs: Cray LibSci, NETLIB ScaLAPACK,
Compilers: gnu 4.8.2
Configuration: 1 thread == 1 MPIl rank == ™
1 physical core

Parallel - 0

(4]

©

7" LydekersLine © {
4 Sahul Shelf |
[ 1

Sunda Shelf
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pbdR | RandSVD

(2 IR

@ RandSVD

¥R
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pbdR and

Randomized truncated SVD?!

Serial R

PROTOTYPE FOR RANDOMIZED SVD
Given an m x n matric A, a target number k of singular vectors, and an K
caponent g (say, ¢ = 1 or g = 2), this procedure computes an approzimate 1| randSVD <— function (A, k, gq=3)
rank-2k factorization USV*, where U and V. are orthonormal, and  is 2
nonnegative and diagonal. 3 44 Stage A
Stage A: . P,
1 Generate an n x 2k Gaussian test matrix €. 4 Omega <_ matrlx(rnorm(n 2 k)'
2 Form Y = (AA*)7AQ by multiplying alternately with A and A*. 5 nrow=n, ncol=2%*k)
3 Chnnstruct .,} n‘;&trix Q whose columns form an orthonormal basis for 6 Y <— A %% Omega
the range of Y. 7 Q < Q(
— qr.Q(ar(Y))
Stage B: q
4 Form B=Q'A. 8 At <— t(A)
5 Compute an SVD of the small matrix: B = USV*. 9 for(i in 1:q)
6 Set U=QU. 10 {
Note: The computation of ¥ in step 2 is vulnerable to round-off errors. 11 Y <— At %% Q
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A*; see Algorithm 4.4, 12 Q <= qr.Q(ar(Y))
13 Y <— A %% Q
14 <— qr. r(Y
ALGORITHM 4.4: RANDOMIZED SUBSPACE ITERATION 15 Q q Q( a ( ) )
Given an'm x n matric A and integers £ and q, this algorithm computes an }
m x { orthonormal matriz Q whose range approzimates the range of A. 16
1 Draw an n x £ standard Gaussian matrix Q. 17 #4 Stage B
2 Form Yy = AQ and compute its QR factorization Yy = Qo Ro. 18 B<— t (Q) %% A
3 forj=1,2...,q
4 Form ¥ = A°Q, 1 and compute its QR factorization ¥; = @, ;. 19 U< La.svd(B)$u
5 Form Yj = AQ; and compute its QR factorization ¥; = Q; R;. 20 U<— Q%% U
6 end 21 U, 1:k]
7 Q=Q, 20 1

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions SIAM Review 53 217-288

ur
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pbdR | RandSVD

Randomized truncated SVD

Serial R Parallel pbdR
1| randSVD <— function (A, k, q=3) 1| randSVD <— function (A, k, gq=3)
2 { 2 {

3 ## Stage A 3 ## Stage A

4 Omega <— matrix (rnorm(n*2xk), 4 Omega <— ddmatrix("rnorm”,
nrow=n, ncol=2xk) 5 nrow=n, ncol=2%k)

5 Y <— A %% Omega 6 Y <— A %*% Omega

6 Q <= qr.Q(ar(Y)) 7 Q <= qr.Q(ar(Y))

7 At <— t(A) 8 At <— t(A)

8 for(i in 1:q) 9 for(i in 1:q)

9 10

10 Y <— At %% Q 11 Y <— At %% Q

11 Q <— ar.Q(ar(Y)) 12 Q <— qr.Q(ar(Y))

12 Y <— A %% Q 13 Y <— A %% Q

13 Q <= ar.Q(qr(Y)) 14 Q <= qr.Q(ar(Y))

14 } 15 }

15 16

16 ## Stage B 17 ## Stage B

17 B <— t(Q) %% A 18 B <— t(Q) %% A

18 U <— La.svd(B)$u 19 U <— La.svd(B)$u

19 U< Q %% U 20 U<—Q %% U

20 U[, 1:k] 21 U[, 1:k]

21| } 2| 1}
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From journal to scalable code and scaling data in one day.

30 Singular Vectors from a 100,000 by 1,000 Matrix 30 Singular Vectors from a 100,000 by 1,000 Matrix
Speedup of Randomized vs. Full SVD

Algorithm ~ —— full — randomized

15-
j=N
3
S 910-
8 o
> 2]
Q.
n
5
1 2 4 8 15 32 64 128 1 2 a4 8 16 32 64 128
Cores Cores
Speedup relative to 1 core RandSVD speedup relative to full SVD
%,
33/43
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pbdR pbdMPI Example: Random Forest Prediction

(2 IR

o pbdMPI Example: Random Forest Prediction

OAK

Core Team  Harnessing HPC Research for R



pbdR pbdMPI Example: Random Forest Prediction

Letter Recognition Data

Example 1: Letter Recognition data from package mlbench (20,000 x 17)

[,1] lettr capital letter

[,2] x.box horizontal position of box
[,3] y.box vertical position of box
[,4] width width of box

[,56] high height of box

[,6] onpix total number of on pixels
[,7] x.bar mean x of on pixels in box
[,8] y.bar mean y of on pixels in box
[,9] x2bar mean x variance

[,10] y2bar mean y variance

[,11] xybar mean x y correlation
[,12] x2ybr mean of x°2 y

[,13] xy2br mean of x y~2

0385855554 :
XXZ:’XXXX](X-‘X 14| [,14] x.ege mean edge count left to right
15| [,15] xegvy correlation of x.ege with y

16| [,16] y.ege mean edge count bottom to top
17| [,17] yegvx correlation of y.ege with x
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P. W. Frey and D. J. Slate (Machine Learning Vol 6/2 March 91): " Letter Recognition Using Holland-style Adaptive Classifiers".
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Example 1: Random Forest Algorithm
@ Build simple regression trees from random subsets of columns

@ Use model averaging for prediction

© Package randomForest has a combine () function that enables the
following parallel approach:
@ Everyone gets the same training data
Split regression tree building among processors (randomForest)
Use allgather to bring built predictors to all
Everyone combine predictors
Split prediction work by blocks of rows
@ Use allreduce to assess prediction

(2]
(s
o
(5]
© Steps (3) and (4) can be improved with a custom reduce/combine to
take advantage of MPI vendor optimizations
gf;l‘l;}l
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Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Serial Code 4_rf_s.r

1| library (randomForest)

2| library(mlbench)

3| data(LetterRecognition) # 26 Capital Letters Data 20,000 x 17

4| set.seed(seed=123)

5/|n <- nrow(LetterRecognition)

6|n_test <- floor (0.2%*n)

7|i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8| train <- LetterRecognition[-i_test, ]

9| test <- LetterRecognition[i_test, ]

10

11| ## train random forest

12| rf.all <- randomForest(lettr ~ ., train, ntree=500,
norm.votes=FALSE)

13

14| ## predict test data

15| pred <- predict(rf.all, test)

16 | correct <- sum(pred == test$lettr)

17| cat ("Proportion Correct:", correct/(n_test), "\n")
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Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Parallel Code 4_rf_p.r

1| library (randomForest)

2| library(mlbench)

3| data(LetterRecognition)

4| comm.set.seed(seed=123, diff=FALSE) # same training data

5/|n <- nrow(LetterRecognition)

6|n_test <- floor (0.2%*n)

7|i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8| train <- LetterRecognition[-i_test, ]

9| test <- LetterRecognition[i_test, ]I[get.jid(n_test), ]

10

11 | comm. set.seed (seed=1e6*runif (1), diff=TRUE)

12|my.rf <- randomForest(lettr ~ ., train, ntree=500%/%comm.size(),
norm.votes=FALSE)

13| rf.all <- do.call(combine, allgather(my.rf))

14

15| pred <- predict(rf.all, test)

16 | correct <- allreduce(sum(pred == test$lettr))

17 | comm. cat ("Proportion Correct:", correct/(m_test), "\n")
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Runs serial or on any number of cores

[beacon-login2 stats]$ time Rscript 4rf.s.r
Proportion Correct: 0.96725

real Om49.028s user Om48.626s sys Om0.335s
[beacon-login2 stats]$ time Rscript 4rfp.r
Proportion Correct: 0.96425

real Omb2.634s user Omb51.914s sys Om0.598s
[beacon-login2 stats]$ time mpirun -np 2 Rscript 4rf p.r
Proportion Correct: 0.96425

real Om28.349s user Omb4.570s sys Om1.070s

10| [beacon-login2 stats]$ time mpirun -np 4 Rscript 4rfp.r
11| Proportion Correct: 0.963

12| real Om16.380s user 1ml.559s sys Oml.664s

13| [beacon-login2 stats]$ time mpirun -np 8 Rscript 4rfp.r
14| Proportion Correct: 0.963

15| real Om11.010s user 1m19.301s sys Om3.421s

16 | [beacon-login2 stats]$ time mpirun -np 16 Rscript 4rf p.r
17| Proportion Correct: 0.9635

18| real Om10.655s user 2m32.508s sys Om6.624s

19| [beacon-login2 stats]$ time mpirun -np 32 Rscript 4rfp.r
20| Proportion Correct: 0.96325

21| real Om21.692s user 4m44.114s sys O0m20.179s
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fda.usc Package

Profiling min.basis()

1|> summaryRprof ()

2| $by.total

3 total.time total.pct self.time self.pct
4| "min.basis" 12.32 100.00 0.00 0.00
5|"type.CV" 6.54 53.08 0.02 0.16
6|"S.basis" 5.76 46.75 0.00 0.00
7| "drop" 4.20 34.09 0.00 0.00
8| "norm.fdata" 4.20 34.09 0.00 0.00
9| "metric" 4.18 33.93 1.04 8.44
0] "h*h" 3.98 32.31 3.98 32.31
11| "getbasispenalty" 2.72 22.08 0.02 0.16
12| "bsplinepen" 2.68 21.75 0.36 2.92
13| "int .simpson2" 2.54 20.62 1.96 15.91
14"t 2.10 17.05 0.10 0.81
15| "ppBspline" 1.60 12.99 0.82 6.66
6. . .

or
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Example: min.basis() 110 lines SPMD: Add 5, change 3
1|min.basis <- function(fdataobj, type.CV = GCV.S, . . ., ...)
2| {
3 13 lines
4 library(pbdMPI)
5 init ()
6 my.k <- get.jid(lenlambda)
7 my.gcv <- array(Inf, dim = c(lenbasis, length(my.k)))
8 36 lines
9 for (i in 1:lenbasis) {
10 3 lines
11 for (k in my.k) {
12 S2 <- S.basis(tt, base, lambdalk])
13 my.gevli, k - my.k[1] + 1] <-
14 type.CV(fdataobj, S = S2, W = W, trim =
par.CV$trim, draw = par.CV$draw, ...)
15 }
16 +
17 gcv <- do.call(cbind, allgather(my.gcv))
18 finalize ()
19 . . . 48 lines

Core Team | Harnessing HPC Research for R 40/43



Contents

© pbdcCs

@ Client-Server Demo

Core Team = Harnessing HPC Research for R



pbdCS Client-Server Demo

© pbdCS
@ Client-Server Demo

¥R
Core Team  Harnessing HPC Research for R




pbdCS Client-Server Demo

Some explanation goes here The demo goes here
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@ Future Work
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Future Work

@ Second year of a 3 year NSF grant to

Bring back interactivity via client/server (pbdCS 0.1-0)
o Simplify parallel data input

o Begin DPLASMA integration

o Outreach to the statistics community

o DOE funding: In-situ or staging use with simulations
o Machine learning from fusion simulation data

o Collaboration wishlist

RDD, HDFS, etc., file readers

o Communicator integration with SparkR or Spark

o Communicator integration with Vislt and ParaView

o pbdCS integration with RStudio IDE

o Instrumentation of various R packages with pbdR
¥R
or
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Future Work

Where to learn more?

@ http://r-pbd.org/
o pbdDEMO vignette
@ Googlegroup:RBigDataProgramming

*’O/\K
Ribor
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