
ppppppbbbbbbddddddRRRRRR: Harnessing HPC Research for Parallel Computing
with R

George Ostrouchov

Oak Ridge National Laboratory and University of Tennessee

ISM HPCCON and ISM HPC on R Workshop, October 9-12, 2015
Institute of Statistical Mathematics, Tokyo, Japan

ppppppbbbbbbddddddRRRRRR Core Team ppppppbbbbbbddddddRRRRRR: Harnessing HPC Research for Parallel Computing with R

The ppppppbbbbbbddddddRRRRRR Core Team

Wei-Chen Chen1

George Ostrouchov2,3

Pragneshkumar Patel3

Drew Schmidt3

1FDA
Washington, DC, USA

2Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge TN, USA

3Joint Institute for Computational Sciences
University of Tennessee, Knoxville TN, USA

Support
This material is based upon work supported by the National Science Foundation Division of Mathematical Sciences under Grant
No. 1418195. This work used resources of the National Institute for Computational Sciences at the University of Tennessee,
Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S. National Science Foundation. This work also used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

ppppppbbbbbbddddddRRRRRR Core Team ppppppbbbbbbddddddRRRRRR: Harnessing HPC Research for Parallel Computing with R

Introduction to HPC and Its View from R

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

3 pbdCS
Client-Server Demo

4 Future Work
ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R

Contents

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R Three Basic Flavors of Parallel Hardware

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R Three Basic Flavors of Parallel Hardware

Cores and Co-Processors to Nodes

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 1/43

Introduction to HPC and Its View from R Cluster Computer Architectures

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R Cluster Computer Architectures

Parallel Computing before Multicore

HPC “Beowulf” Clusters before 2005

Compute Nodes and Disk

Your Laptop
B

ig
 D

at
a

“Little Data”Login Nodes

Software Developments:

MPI is mature, MapReduce
emerges

Parallel Libraries: PBLAS,
ScaLAPACK, PETSc, etc.

Resource Manager: PBS
mature, HADOOP emerges

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 2/43

Introduction to HPC and Its View from R Cluster Computer Architectures

Multicore Emerges and Clusters become Diskless

2005-2015 HPC Cluster Parallel
File System

Disk
Storage
Servers

Compute Nodes I/O Nodes

Login Nodes Your Laptop

B
ig

 D
at

a
“Little Data”

Multicore

Software Developments

OpenMP, CUDA, OpenCL,
OpenACC

Libraries: PLASMA,
MAGMA, CuBLAS

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 3/43

Introduction to HPC and Its View from R Cluster Computer Architectures

Adding NVRAM to New HPC Systems

Today’s HPC Cluster Parallel
File System

Disk
Storage
Servers

Compute Nodes I/O Nodes

Login Nodes Your Laptop

B
ig

 D
at

a
“Little Data”

Solid State
Disk

Multicore

Software Developments

Libraries: DPLASMA,
CombBLAS

HADOOP fades, Spark
emerges

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 4/43

Introduction to HPC and Its View from R A Quick Overview of Parallel Software

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R A Quick Overview of Parallel Software

“Native” Programming Models and Tools

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Default is parallel (SPMD): what is my data
and what do I need from others?

Default is serial: which tasks can
the compiler make parallel?

Offload data and tasks.
We are slow but many!

Sockets
MPI

MapReduce

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

CUDA
OpenCL

OpenACC
OpenMP
Pthreads

fork

CUDA
OpenCL

OpenACC
OpenMP
Pthreads

fork

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 5/43

Introduction to HPC and Its View from R A Quick Overview of Parallel Software

Distributed Programming Works in Shared Memory

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Default is parallel (SPMD): what is my data
and what do I need from others?

Default is serial: which tasks can
the compiler make parallel?

Offload data and tasks.
We are slow but many!

Sockets
MPI

MapReduce

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory
CUDA

OpenCL
OpenACC
OpenMP
Pthreads

fork

CUDA
OpenCL

OpenACC
OpenMP
Pthreads

fork

✔ ✘
✘

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 6/43

Introduction to HPC and Its View from R A Quick Overview of Parallel Software

R Interfaces to Low-Level Native Tools

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Default is parallel (SPMD): what is my data
and what do I need from others?

Default is serial: which tasks can
the compiler make parallel?

Offload data and tasks.
We are slow but many!

Sockets
MPI

MapReduce

snow
Rmpi
Rhpc

pbdMPI

 snow + multicore = parallel

 RHadoop
SparkR

CUDA
OpenCL

OpenACC
OpenMP
Pthreads

fork

CUDA
OpenCL

OpenACC
OpenMP
Pthreads

fork

multicore

Foreign
Language
Interfaces:

.C
.Call
Rcpp

OpenCL
inline

.

.

.

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 7/43

Introduction to HPC and Its View from R A Quick Overview of Parallel Software

R and ppppppbbbbbbddddddRRRRRR Interfaces to HPC Libraries

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Trilinos

PETSc

PLASMA

DPLASMALibSci (Cray)
MKL (Intel)

ScaLAPACK
PBLAS
BLACS

cuBLAS (NVIDIA)

MAGMA

PAPI

Tau

MPI
mpiP

fpmpi

NetCDF4

ADIOS

pbdMPI

pbdPAPI

pbdNCDF4

pbdADIOS

pbdPROF pbdPROF pbdPROF

ACML (AMD)

pbdDEMO

CombBLAS

cuSPARSE (NVIDIA)

pbdDMATpbdDMATpbdDMAT
pbdDMAT

pbdBASE
pbdSLAP

ZeroMQ pbdCS

Profiling

I/O

Learning

Released Under Development

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 8/43

Introduction to HPC and Its View from R Batch and Interactive

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R Batch and Interactive

Data analysis is interactive!

Data reduction to knowledge

Iterative process with same data

Exploration, model construction
Diagnostics of fit and quantification of uncertainty
Interpretation

S (and R) interactive “answer” to batch data analysis

Efficient use of expensive people

Big platform computing is batch!

Libraries built for batch computing

Traditionally data generation by simulation science

Efficient use of expensive platforms

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 9/43

Introduction to HPC and Its View from R Batch and Interactive

High-Level Language: Batch and Interactive Distinction Blurred.

A function is a “batch” script

R “An interactive environment to use batch scripts”

Ideal solution: Interactive Client with a Batch Server

Parallel visualization systems (VisIt and ParaView) are client-server
(batch on server)

Current ppppppbbbbbbddddddRRRRRR packages address server side (batch)

pbdCS 0.1-0 released on GitHub

Interactive SPMD
Based on ZeroMQ distributed messaging (pbdZMQ 0.1-1 on CRAN)
Bridge resource manager (pbdSCHED 0.1-0 on GitHub)
Site configuration file
Manage relationship of big data (server side) to little data (client side)

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 10/43

Introduction to HPC and Its View from R Programming Models

1 Introduction to HPC and Its View from R
Three Basic Flavors of Parallel Hardware
Cluster Computer Architectures
A Quick Overview of Parallel Software
Batch and Interactive
Programming Models

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Introduction to HPC and Its View from R Programming Models

Manager-Workers

A serial program (Manager) divides up work and/or data

Workers run in parallel without interaction

Manager collects/combines results from workers

Divide-Recombine fits this model

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 11/43

Introduction to HPC and Its View from R Programming Models

MapReduce

A concept born of a search engine

Decouples certain coupled problems with an intermediate
communication - shuffle

User writes two serial codes: Map and Reduce

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 12/43

Introduction to HPC and Its View from R Programming Models

MapReduce: a Parallel Search Engine Concept

Search MANY documents Serve MANY users

Web
Pages

(records)

p0

p1

p2

p3

Index Words (keys)
A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4


Shuffle
−→

MPI Alltoallv

Index
Words
(keys)

p0

p1

p2

p3

Web Pages (records)
A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4



Matrix transpose in another language?

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 13/43

Introduction to HPC and Its View from R Programming Models

Can use different sets of processors

Web
Pages

(records)

p0

p1

p2

p3

Index Words (keys) B1 B2 B3 B4


Streaming

Shuffle
−→

MPI Scatter

Index
Words
(keys)

p4

p5

p6

p7

Web Pages (records)
B1

B2

B3

B4



ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 14/43

Introduction to HPC and Its View from R Programming Models

MPI and MapReduce

Both Concepts are about Communication

One makes communication explicit, gives choices

The other hides communication, gives one choice (shuffle)

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 15/43

Introduction to HPC and Its View from R Programming Models

SPMD: Single Program Multiple Data

The prevalent way of distributed programming

Can handle tightly coupled parallel computations

It is designed for batch computing

There is usually no manager - rather, all cooperate

Prime driver behind MPI specification

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 16/43

Introduction to HPC and Its View from R Programming Models

Early SPMD Work in Statistics: Crossproduct (Row-Block)

Hypercube: Individual send() and recv() over each dimension

Ostrouchov (1987). Parallel Computing on a Hypercube: An overview of the architecture and

some applications. Proceedings of the 19th Symposium on the Interface of Computer Science

and Statistics, p.27-32.
ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 17/43

Introduction to HPC and Its View from R Programming Models

Simplified with MPI (and further with pbdMPI)

A = reduce(X’X)

A = allreduce(X’X)

Architecture-specific vendor optimizations

Cray MPT

SGI MPT

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 18/43

Introduction to HPC and Its View from R Programming Models

Data-flow: Parallel Runtime Scheduling and Execution
Controller (PaRSEC)

Graphic from icl.cs.utk.edu

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J. ”PaRSEC: Exploiting Heterogeneity to Enhance
Scalability,” IEEE Computing in Science and Engineering, Vol. 15, No. 6, 36-45, November, 2013.

Master data-flow controller runs distributed on all cores.

Dynamic generation of current level in flow graph

Effectively removes collective synchronizations

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 19/43

pbdR

Contents

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR The pbdR Project

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR The pbdR Project

ppppppbbbbbbddddddRRRRRR Interfaces to Libraries: Sustainable Path

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Trilinos

PETSc

PLASMA

DPLASMALibSci (Cray)
MKL (Intel)

ScaLAPACK
PBLAS
BLACS

cuBLAS (NVIDIA)

MAGMA

PAPI

Tau

MPI
mpiP

fpmpi

NetCDF4

ADIOS

pbdMPI

pbdPAPI

pbdNCDF4

pbdADIOS

pbdPROF pbdPROF pbdPROF

ACML (AMD)

pbdDEMO

CombBLAS

cuSPARSE (NVIDIA)

pbdDMATpbdDMATpbdDMAT
pbdDMAT

pbdBASE
pbdSLAP

ZeroMQ pbdCS

Profiling

I/O

Learning

Released Under Development

Why use HPC libraries?

The libraries represent 30+ years of research by the HPC community

They’re tested. They’re fast. They’re scalable.

Many science communities are invested in their API.

HPC Simulation Science uses much of the same math as data analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 20/43

pbdR pbdMPI

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR pbdMPI

pbdMPI: Simplified, Extensible, and Fast Communication Operations

S4 methods for collective communication: extensible to other R
objects.

Default methods (like Robj in Rmpi) check for data type: safe for
general users.

API is simplified: defaults in control objects.

Array and matrix methods without serialization: faster than Rmpi.

pbdMPI (S4) Rmpi
allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
allreduce mpi.allreduce

bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj
reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj
send mpi.send, mpi.send.Robj

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 21/43

pbdR pbdMPI

Integer? Not always obvious in R.

1 > is.integer (1)

2 [1] FALSE

3 > is.integer (2)

4 [1] FALSE

5 > is.integer (1:2)

6 [1] TRUE

pbdMPI lets R figure it out

Rmpi

1 # int

2 mpi.allreduce(x, type =1)

3 # double

4 mpi.allreduce(x, type =2)

pbdMPI

1 allreduce(x)

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 22/43

pbdR pbdMPI

Single Program (SPMD): Runs Asynchronous Parallel

Rank Query Example

1 rank.r

1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 my.rank <- comm.rank()

5 comm.print(my.rank , all.rank=TRUE)

6

7 finalize ()

Execute this batch script via:

1 mpirun -np 2 Rscript 1_rank.r

Sample Output:

1 COMM.RANK = 0

2 [1] 0

3 COMM.RANK = 1

4 [1] 1

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 23/43

pbdR pbdDMAT

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR pbdDMAT

Mapping a Matrix to Processors

Processor Grid Shapes

[
0 1 2 3 4 5

]

(a) 1 × 6

[
0 1 2
3 4 5

]

(b) 2 × 3




0 1
2 3
4 5




(c) 3 × 2




0
1
2
3
4
5




(d) 6 × 1

Table: Processor Grid Shapes with 6 Processors

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 24/43

pbdR pbdDMAT

2×3 block-cyclic grid on 6 processors: Global view “ddmatrix” class

x =




x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99




9×9

Processor grid =

∣∣∣∣
0 1 2
3 4 5

∣∣∣∣ =

∣∣∣∣
(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

∣∣∣∣

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 25/43

pbdR pbdDMAT

2×3 block-cyclic grid on 6 processors: Local view “ddmatrix” class




x11 x12 x17 x18

x21 x22 x27 x28

x51 x52 x57 x58

x61 x62 x67 x68

x91 x92 x97 x98




5×4




x13 x14 x19

x23 x24 x29

x53 x54 x59

x63 x64 x69

x93 x94 x99




5×3




x15 x16

x25 x26

x55 x56

x65 x66

x95 x96




5×2


x31 x32 x37 x38

x41 x42 x47 x48

x71 x72 x77 x78

x81 x82 x87 x88




4×4




x33 x34 x39

x43 x44 x49

x73 x74 x79

x83 x84 x89




4×3




x35 x36

x45 x46

x75 x76

x85 x86




4×2

Processor grid =

∣∣∣∣
0 1 2
3 4 5

∣∣∣∣ =

∣∣∣∣
(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

∣∣∣∣

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 26/43

pbdR pbdDMAT

ppppppbbbbbbddddddRRRRRR Example Syntax

1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 x.pca <- prcomp(x)

4 xtx <- t(x) %*% x

5 ans <- svd(solve(xtx))

The above (and over 100 other functions) runs on 1 core with R
or 10,000 cores with ppppppbbbbbbddddddRRRRRR ddmatrix class

1 > showClass("ddmatrix")

2 Class "ddmatrix" [package "pbdDMAT"]

3 Slots:

4 Name: Data dim ldim bldim ICTXT

5 Class: matrix numeric numeric numeric numeric

1 > x <- as.rowblock(x)

2 > x <- as.colblock(x)

3 > x <- redistribute(x, bldim=c(8, 8), ICTXT = 0)

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 27/43

pbdR pbdDMAT

pbdDMAT Scalability Benchmarks

Default choices throughout (no MKL, ACML, etc.)

1 core = 1 MPI process (Kraken: 6-core Opterons)

Generate random matrix

Global Columns: 500, 1000, and 2000
Global Rows: fixed per core to make 43.4MiB

Measure wall clock time

“weak scaling” = global problem grows with core count

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 28/43

pbdR pbdDMAT

pbdDMAT Scalability Benchmarks

1 x <- ddmatrix("rnorm",

nrow=n, ncol=p)

2 cov.x <- cov(x)

21.34

42.68
85.35

170.7 341.41

21.34 42.68 85.35 170.7 341.41

21.34
42.68

85.35 170.7

341.41

7

8

9

10

11

504 1008 2016 4032 8064504 1008 2016 4032 8064504 1008 2016 4032 8064
Cores

R
un

 T
im

e
(S

ec
on

ds
)

Predictors 500 1000 2000

Calculating cov(x) With Fixed Local Size of ~43.4 MiB

1 b <- ddmatrix("runif", nrow=p,

ncol =1)

2 y <- x %*% b

3 b.hat <- lm.fit(x, y)$coefficients

21.34

42.6885.35
170.7 341.41

1016.09

21.34
42.6885.35 170.7

341.41
1016.09

21.34
42.68

85.35

170.7
341.41

1016.09

25

50

75

100

125

50
4

10
08

20
16

40
32

80
64

24
00

0
50

4
10

08
20

16
40

32
80

64

24
00

0
50

4
10

08
20

16
40

32
80

64

24
00

0

Cores

R
un

 T
im

e
(S

ec
on

ds
)

Predictors 500 1000 2000

Fitting y~x With Fixed Local Size of ~43.4 MiB

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 29/43

pbdR pbdDMAT

Matrix Exponentiation (pbdDMAT)

Fitting biogeography models requires many
matrix exponentiations

Benchmark: Matrix exponential of
5000×5000 matrix.

R 3.1.0, Matrix 1.1-2, rexpokit 0.25,
pbdDMAT 0.3-0

Libs: Cray LibSci, NETLIB ScaLAPACK,
Compilers: gnu 4.8.2

Configuration: 1 thread == 1 MPI rank ==
1 physical core

Schmidt and Matzke (2014) Distributed matrix exponentiation, The R User Conference (UseR! 2014),

Los Angeles, CA, August 2014 .
ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 30/43

pbdR RandSVD

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR RandSVD

Randomized truncated SVD1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ALGORITHMS FOR MATRIX APPROXIMATION 227

Prototype for Randomized SVD
Given an m × n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization UΣV ∗, where U and V are orthonormal, and Σ is
nonnegative and diagonal.
Stage A:
1 Generate an n× 2k Gaussian test matrix Ω.
2 Form Y = (AA∗)qAΩ by multiplying alternately with A and A∗.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q∗A.
5 Compute an SVD of the small matrix: B = ŨΣV ∗.
6 Set U = QŨ .
Note: The computation of Y in step 2 is vulnerable to round-off errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A∗; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error ‖A − QQ∗A‖ does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method offers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this difficulty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually suffices in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is efficient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult +O(k
2(m+ n)),

where Tmult is the flop count of a matrix–vector multiply with A or A∗. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m × n matrix. Select an exponent q
and a target number k of singular vectors, where 2 ≤ k ≤ 0.5min{m,n}. Execute the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 N. HALKO, P. G. MARTINSSON, AND J. A. TROPP

Algorithm 4.3: Randomized Power Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � Gaussian random matrix Ω.
2 Form the m× � matrix Y = (AA∗)qAΩ via alternating application

of A and A∗.
3 Construct an m× � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-off errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � standard Gaussian matrix Ω.
2 Form Y0 = AΩ and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form Ỹj = A∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j .

5 Form Yj = AQ̃j and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with ‖A‖. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) ‖A‖ is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A∗. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m× n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product AΩ. When the test matrix

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− matrix(rnorm(n*2*k),
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions SIAM Review 53 217–288

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 31/43

pbdR RandSVD

Randomized truncated SVD

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− m a t r i x (rnorm (n∗2∗k) ,

nrow=n , n c o l=2∗k)
5 Y <− A %∗% Omega
6 Q <− qr .Q(qr (Y))
7 At <− t (A)
8 f o r (i i n 1 : q)
9 {

10 Y <− At %∗% Q
11 Q <− qr .Q(qr (Y))
12 Y <− A %∗% Q
13 Q <− qr .Q(qr (Y))
14 }
15
16 ## Stage B
17 B <− t (Q) %∗% A
18 U <− La . svd (B) $u
19 U <− Q %∗% U
20 U[, 1 : k]
21 }

Parallel pbdR

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− ddmatrix(”rnorm”,
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 32/43

pbdR RandSVD

From journal to scalable code and scaling data in one day.

●●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

Algorithm ● ●full randomized

30 Singular Vectors from a 100,000 by 1,000 Matrix

●

●
●

●

●
●

●

5

10

15

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

30 Singular Vectors from a 100,000 by 1,000 Matrix
Speedup of Randomized vs. Full SVD

Speedup relative to 1 core RandSVD speedup relative to full SVD

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 33/43

pbdR pbdMPI Example: Random Forest Prediction

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR pbdMPI Example: Random Forest Prediction

Letter Recognition Data

Example 1: Letter Recognition data from package mlbench (20,000 × 17)

1 [,1] lettr capital letter

2 [,2] x.box horizontal position of box

3 [,3] y.box vertical position of box

4 [,4] width width of box

5 [,5] high height of box

6 [,6] onpix total number of on pixels

7 [,7] x.bar mean x of on pixels in box

8 [,8] y.bar mean y of on pixels in box

9 [,9] x2bar mean x variance

10 [,10] y2bar mean y variance

11 [,11] xybar mean x y correlation

12 [,12] x2ybr mean of x^2 y

13 [,13] xy2br mean of x y^2

14 [,14] x.ege mean edge count left to right

15 [,15] xegvy correlation of x.ege with y

16 [,16] y.ege mean edge count bottom to top

17 [,17] yegvx correlation of y.ege with x

P. W. Frey and D. J. Slate (Machine Learning Vol 6/2 March 91): ”Letter Recognition Using Holland-style Adaptive Classifiers”.

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 34/43

pbdR pbdMPI Example: Random Forest Prediction

Example 1: Random Forest Algorithm

1 Build simple regression trees from random subsets of columns

2 Use model averaging for prediction
3 Package randomForest has a combine() function that enables the

following parallel approach:
1 Everyone gets the same training data
2 Split regression tree building among processors (randomForest)
3 Use allgather to bring built predictors to all
4 Everyone combine predictors
5 Split prediction work by blocks of rows
6 Use allreduce to assess prediction

4 Steps (3) and (4) can be improved with a custom reduce/combine to
take advantage of MPI vendor optimizations

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 35/43

pbdR pbdMPI Example: Random Forest Prediction

Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Serial Code 4 rf s.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition) # 26 Capital Letters Data 20,000 x 17

4 set.seed(seed =123)

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,]

10

11 ## train random forest

12 rf.all <- randomForest(lettr ~ ., train , ntree =500,

norm.votes=FALSE)

13

14 ## predict test data

15 pred <- predict(rf.all , test)

16 correct <- sum(pred == test$lettr)

17 cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 36/43

pbdR pbdMPI Example: Random Forest Prediction

Example 1: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Parallel Code 4 rf p.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition)

4 comm.set.seed(seed =123, diff=FALSE) # same training data

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,][get.jid(n test),]

10

11 comm.set.seed(seed=1e6*runif(1), diff=TRUE)

12 my.rf <- randomForest(lettr ~ ., train , ntree =500%/%comm.size(),

norm.votes=FALSE)

13 rf.all <- do.call(combine, allgather(my.rf))

14

15 pred <- predict(rf.all , test)

16 correct <- allreduce(sum(pred == test$lettr))

17 comm.cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 37/43

pbdR pbdMPI Example: Random Forest Prediction

Runs serial or on any number of cores

1 [beacon -login2 stats]$ time Rscript 4 rf s.r

2 Proportion Correct: 0.96725

3 real 0m49.028s user 0m48 .626s sys 0m0.335s

4 [beacon -login2 stats]$ time Rscript 4 rf p.r

5 Proportion Correct: 0.96425

6 real 0m52.634s user 0m51 .914s sys 0m0.598s

7 [beacon -login2 stats]$ time mpirun -np 2 Rscript 4 rf p.r

8 Proportion Correct: 0.96425

9 real 0m28.349s user 0m54 .570s sys 0m1.070s

10 [beacon -login2 stats]$ time mpirun -np 4 Rscript 4 rf p.r

11 Proportion Correct: 0.963

12 real 0m16.380s user 1m1.559s sys 0m1.664s

13 [beacon -login2 stats]$ time mpirun -np 8 Rscript 4 rf p.r

14 Proportion Correct: 0.963

15 real 0m11.010s user 1m19 .301s sys 0m3.421s

16 [beacon -login2 stats]$ time mpirun -np 16 Rscript 4 rf p.r

17 Proportion Correct: 0.9635

18 real 0m10.655s user 2m32 .508s sys 0m6.624s

19 [beacon -login2 stats]$ time mpirun -np 32 Rscript 4 rf p.r

20 Proportion Correct: 0.96325

21 real 0m21.692s user 4m44 .114s sys 0m20 .179s

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 38/43

pbdR pbdMPI Example: Functional Data Analysis

2 pbdR
The pbdR Project
pbdMPI
pbdDMAT
RandSVD
pbdMPI Example: Random Forest Prediction
pbdMPI Example: Functional Data Analysis

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdR pbdMPI Example: Functional Data Analysis

fda.usc Package

Profiling min.basis()

1 > summaryRprof ()

2 $by.total

3 total.time total.pct self.time self.pct

4 "min.basis" 12.32 100.00 0.00 0.00

5 "type.CV" 6.54 53.08 0.02 0.16

6 "S.basis" 5.76 46.75 0.00 0.00

7 "drop" 4.20 34.09 0.00 0.00

8 "norm.fdata" 4.20 34.09 0.00 0.00

9 "metric" 4.18 33.93 1.04 8.44

10 "%*%" 3.98 32.31 3.98 32.31

11 "getbasispenalty" 2.72 22.08 0.02 0.16

12 "bsplinepen" 2.68 21.75 0.36 2.92

13 "int.simpson2" 2.54 20.62 1.96 15.91

14 "t" 2.10 17.05 0.10 0.81

15 "ppBspline" 1.60 12.99 0.82 6.66

16 . . .

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 39/43

pbdR pbdMPI Example: Functional Data Analysis

Example: min.basis() 110 lines SPMD: Add 5, change 3

1 min.basis <- function(fdataobj , type.CV = GCV.S, . . ., ...)

2 {

3 . . . 13 lines

4 library(pbdMPI)

5 init()

6 my.k <- get.jid(lenlambda)

7 my.gcv <- array(Inf , dim = c(lenbasis , length(my.k)))

8 . . . 36 lines

9 for (i in 1: lenbasis) {

10 . . . 3 lines

11 for (k in my.k) {

12 S2 <- S.basis(tt, base , lambda[k])

13 my.gcv[i, k - my.k[1] + 1] <-

14 type.CV(fdataobj , S = S2, W = W, trim =

par.CV$trim , draw = par.CV$draw , ...)

15 }

16 }

17 gcv <- do.call(cbind, allgather(my.gcv))

18 finalize()

19 . . . 48 lines

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 40/43

pbdCS

Contents

3 pbdCS
Client-Server Demo

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdCS Client-Server Demo

3 pbdCS
Client-Server Demo

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

pbdCS Client-Server Demo

0MQ

Some explanation goes here The demo goes here

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 41/43

Future Work

4 Future Work

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R

Future Work

Future Work

Second year of a 3 year NSF grant to

Bring back interactivity via client/server (pbdCS 0.1-0)
Simplify parallel data input
Begin DPLASMA integration
Outreach to the statistics community

DOE funding: In-situ or staging use with simulations

Machine learning from fusion simulation data

Collaboration wishlist

RDD, HDFS, etc., file readers
Communicator integration with SparkR or Spark
Communicator integration with VisIt and ParaView
pbdCS integration with RStudio IDE
Instrumentation of various R packages with pbdR

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 42/43

Future Work

Where to learn more?

http://r-pbd.org/

pbdDEMO vignette

Googlegroup:RBigDataProgramming

ppppppbbbbbbddddddRRRRRR Core Team Harnessing HPC Research for R 43/43

http://r-pbd.org/
Google group: RBigDataProgramming

	Introduction to HPC and Its View from R
	Three Basic Flavors of Parallel Hardware
	Cluster Computer Architectures
	A Quick Overview of Parallel Software
	Batch and Interactive
	Programming Models

	pbdR
	The pbdR Project
	pbdMPI
	pbdDMAT
	RandSVD
	pbdMPI Example: Random Forest Prediction
	pbdMPI Example: Functional Data Analysis

	pbdCS
	Client-Server Demo

	Future Work

