
ORNL is managed by UT-Battelle
for the US Department of Energy

Stalking the Interactive
Terabyte with R

George Ostrouchov1,2,3

Drew Schmidt2
Michael Matheson2

1Scientific Data Group, CSMD
2Advanced Data and Workflow Group, NCCS
Oak Ridge National Laboratory

3Business Analytics and Statistics, UTK (Joint Faculty)
University of Tennessee, Knoxville

Intel® HPC Developer Conference 2017

2 Intel® HPC Developer Conference 2017

From Methods and Batch Runs
to Interactive Software for Data Analysis

Thanks to Dirk Eddelbuettel for this slide idea and to John Chambers for providing the high-resolution scans of the covers of his books.

Chambers.
Computational
Methods for Data
Analysis.
Wiley, 1977.

Becker, Chambers, and
Wilks.
The New S Language.
Chapman & Hall, 1988.

Chambers and Hastie.
Statistical Models in S.
Chapman & Hall, 1992.

Chambers.
Programming with Data.
Springer, 1998.

Chambers.
Software for Data
Analysis:
Programming with R.
Springer, 2008.

3 Intel® HPC Developer Conference 2017

The R Software for Data
Approaches Popularity of

General Programming Languages

2016

2015

2014

2017 IEEE Spectrum’s Ranking of Programming Languages

2017

4 Intel® HPC Developer Conference 2017

Discovery Thrives on Diversity

4

5 Intel® HPC Developer Conference 2017Intel® HPC Developer Conference 2017

Resources for Learning R

• RStudio IDE

• Favorite book: The Art of R Programming by Norm Matloff:

• Short intro: R Language for Programmers by John Cook

• Longer intro: aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and
Kevin Ushey

• Grammar of graphics ggplot2, tidyverse for data wrangling, and
Advanced R by Hadley Wickham

• Help: Mailing list archives and the [R] stackoverflow tag.

• Distributed programming with big data in R: pbdR.org, and our paper in
Big Data Research (Schmidt et al., 2016).

http://www.rstudio.com/products/rstudio-desktop/
http://nostarch.com/artofr.htm
http://www.johndcook.com/R_language_for_programmers.html
http://tim-smith.us/arrgh/
http://ggplot2.tidyverse.org/
http://tidyverse.org/index.html
http://adv-r.had.co.nz/
http://tolstoy.newcastle.edu.au/R/
http://stackoverflow.com/tags/r/info
http://pbdr.org/
http://dx.doi.org/10.1016/j.bdr.2016.10.002

6 Intel® HPC Developer Conference 2017Intel® HPC Developer Conference 2017

Current Developers
Wei-Chen Chen, USFDA

Michael Matheson, ORNL

George Ostrouchov, ORNL & UTK

Drew Schmidt, ORNL

Past Developers and Contributors
Christian Heckendorf, Yuping Lu, Pragneshkumar Patel, Gaurav Sehrawat, Whit Armstrong, Ewan Higgs, Michael
Lawrence, David Pierce, Brian Ripley, ZhaoKang Wang, Hao Yu

Support
Used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
(“supported software” at OLCF)

National Science Foundation Division of Mathematical Sciences under Grant No. 1418195, 2014-2018.

The National Institute for Mathematical and Biological Synthesis, under Award No. EF-0832858 and DBI-1300426, 2013-
2014.

The Division of Molecular and Cellular Biosciences, National Science Foundation Award MCB-1120370, 2013-2014.

The Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324
for NICS-RDAV center, 2012-2013.

U.S. Department of Energy Office of Science under Contract No. DE-AC05-00OR22725, 2011-2013.

Also used resources of the National Institute for Computational Sciences at the University of Tennessee, Knoxville,
which is supported by the Office of Cyberinfrastructure of the U.S. National Science Foundation.

pbdR Project

pbdr.org/packages

8 Intel® HPC Developer Conference 2017

A Scalable Platform
for Developing Interactive Big Data Analytics

July 6, 2016

“OLCF Researchers Scale R to Tackle Big Science Data Sets”
“for situations where one needs interactive near-real-time analysis, the pbdR
approach is much better [than Apache Spark–like frameworks].”
PCA of a 134 GB matrix: “several hours on . . . Apache Spark, . . . less than a minute
using R.”

Modern statistical algorithm + pbdR infrastructure + HPC Libraries + HPC Hardware

• Engage parallel math libraries at scale
• R language unchanged
• New distributed concepts
• New profiling capabilities
• New interactive SPMD parallel
• In-situ distributed capability
• In-situ staging capability via ADIOS
• 2016 ORNL Significant Event Award

http://pbdr.org

Schmidt, Chen, Matheson, and Ostrouchov (2017). Programming with BIG Data in R: Scaling Analytics from One to Thousands of Nodes, Big Data Research, 8, p.1-11.
Schmidt, Chen, and Ostrouchov (2016). Introducing a New Client/Server Framework for Big Data Analytics with the R Language. XSEDE16 Conference on Diversity, Big Data,
and Science at Scale.

http://pbdr.org/

9 Intel® HPC Developer Conference 2017

Implementing Modern Statistical Algorithms:
Truncated SVD from Random Projections

Distributed Parallel Computing with R Outline

Truncated SVD from random projections1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ALGORITHMS FOR MATRIX APPROXIMATION 227

Prototype for Randomized SVD
Given an m ⇥ n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization U�V �, where U and V are orthonormal, and � is
nonnegative and diagonal.
Stage A:
1 Generate an n ⇥ 2k Gaussian test matrix �.
2 Form Y = (AA�)qA� by multiplying alternately with A and A�.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q�A.

5 Compute an SVD of the small matrix: B = �U�V �.

6 Set U = Q �U .
Note: The computation of Y in step 2 is vulnerable to round-o� errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A�; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error �A � QQ�A� does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method o�ers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this di�culty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually su�ces in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is e�cient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult + O(k2(m + n)),

where Tmult is the flop count of a matrix–vector multiply with A or A�. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m ⇥ n matrix. Select an exponent q
and a target number k of singular vectors, where 2 � k � 0.5 min{m, n}. Execute the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 N. HALKO, P. G. MARTINSSON, AND J. A. TROPP

Algorithm 4.3: Randomized Power Iteration
Given an m ⇥ n matrix A and integers � and q, this algorithm computes an
m ⇥ � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n ⇥ � Gaussian random matrix �.
2 Form the m ⇥ � matrix Y = (AA�)qA� via alternating application

of A and A�.
3 Construct an m ⇥ � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-o� errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m ⇥ n matrix A and integers � and q, this algorithm computes an
m ⇥ � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n ⇥ � standard Gaussian matrix �.
2 Form Y0 = A� and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form �Yj = A�Qj�1 and compute its QR factorization �Yj = �Qj
�Rj .

5 Form Yj = A �Qj and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with �A�. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) �A� is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A�. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m ⇥ n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product A�. When the test matrix

Serial R

1 randSVD <� f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <� mat r i x (rnorm (n⇤2⇤k) ,

nrow=n , n co l=2⇤k)
5 Y<� A %⇤% Omega
6 Q<� qr .Q(qr (Y))
7 At <� t (A)
8 f o r (i i n 1 : q)
9 {

10 Y<� At %⇤% Q
11 Q<� qr .Q(qr (Y))
12 Y<� A %⇤% Q
13 Q<� qr .Q(qr (Y))
14 }
15
16 ## Stage B
17 B<� t (Q) %⇤% A
18 U<� La . svd (B) $u
19 U<� Q %⇤% U
20 U[, 1 : k]
21 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing

approximate matrix decompositions SIAM Review 53 217–288

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science

10 Intel® HPC Developer Conference 2017

From Serial Pseudocode to Scalable Code
and Benchmark Data in One Day!

Distributed Parallel Computing with R Outline

From serial pseudocode to parallel scalable code
in one day!

Parallel pbdR

1 randSVD <� f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <� ddmatrix(”rnorm”, nrow=n, ncol=2*k)
5 Y<� A %⇤% Omega
6 Q<� qr .Q(qr (Y))
7 At <� t (A)
8 f o r (i i n 1 : q)
9 {

10 Y<� At %⇤% Q
11 Q<� qr .Q(qr (Y))
12 Y<� A %⇤% Q
13 Q<� qr .Q(qr (Y))
14 }
15
16 ## Stage B
17 B<� t (Q) %⇤% A
18 U<� La . svd (B) $u
19 U<� Q %⇤% U
20 U[, 1 : k]
21 }

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

10

20

40

100

200

400

1 2 4 8 16 32 64 128
Cores

Ti
m

e
(s

ec
on

ds
)

Algorithm
●

●

20 rSVD

Full SVD

100,000 x 1,000 matrix (.8 GB)

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science

11 Intel® HPC Developer Conference 2017

Microscopy Data PCA Benchmark (134 GB)
with rsvd

Distributed Parallel Computing with R Outline

Big Benchmark (134 GB) on Big Clusters
rpca centers, optionally scales, and uses rsvd

fastpca.R

1 suppressPackageStartupMessages(library(rhdf5))
2 suppressPackageStartupMessages(library(pbdIO))
3 suppressPackageStartupMessages(library(pbdML))
4 init.grid()
5
6 var <- "your_hdf5_full_variable_name"
7 h5f <- H5Fopen("your_hdf5_file_name")
8 h5d <- H5Dopen(h5f , var)
9 h5s <- H5Dget_space(h5d)

10 dims <- H5Sget_simple_extent_dims(h5s)$size
11 rows <- dims [2] # row -major to column -major
12 cols <- dims [1] # because data written by C/Py
13
14 ## read C/Py -written blocks of rows into R blocks of columns
15 my_rows <- comm.chunk(rows , form="vector", type="equal")
16 A <- t(h5read(h5f , var , index=list(NULL , my_rows)))
17
18 ## add glue to make a global column -block ddmatrix
19 A <- new("ddmatrix", Data=A, dim=c(rows , cols), ldim=dim(A), bldim=dim(A), ICTXT =2)
20
21 ## rearrange into block -cyclic
22 A <- as.blockcyclic(A)
23
24 ## get 32 top singular values and vectors
25 Res <- rpca(A, k = 32)
26
27 ## print the singular values
28 comm.print(Res$d)
29
30 finalize ()

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science

12 Intel® HPC Developer Conference 2017

Microscopy Data PCA Benchmark (134 GB)
Distributed Parallel Computing with R Outline

Big Benchmark (134 GB) on Big Clusters
host: eos host: rhea host: titan

50

100

200

500

1000

2500

100 1000 5000 100 1000 5000 100 1000 5000
Number of Cores

Ti
m

e
(s

ec
)

as.factor(npernode)
2

16

method
rsvd

svd

RSVD vs SVD Performance

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science

13 Intel® HPC Developer Conference 2017Intel® HPC Developer Conference 2017

• For skinny matrices, horizontal or vertical
• Especially useful when only top singular vectors needed
• Relies on allreduce and a small SVD
• Interactive speeds for TB-size data

New Developments for Skinny Matrices:
shaq Matrix in kazaam Package

m⇥ n X = UDV T

m � n XTX = V DUTUDV T = V D2V T

U = XVD�1

m ⌧ n XXT = UDV TV DUT = UD2UT

V T = D�1UTX

n ✕ n

m ✕ m

14 Intel® HPC Developer Conference 2017

X =

2

6664

X1

X2
...
Xr

3

7775

XTX =
rX

i=1

XT
i Xi

= V D2V T

U = XVD�1 =

2

6664

X1

X2
...
Xr

3

7775
V D�1 =

2

6664

X1V D�1

X2V D�1

...
XrV D�1

3

7775
=

2

6664

U1

U2
...
Ur

3

7775

Tall – Distributed by Row Blocks

15 Intel® HPC Developer Conference 2017

Wide – Distributed by Column Blocks

X = [X1|X2| · · · |Xr]

XXT = [X1|X2| · · · |Xr]

2

6664

XT
1

XT
2
...

XT
r

3

7775
=

rX

i=1

XiX
T
i = UD2UT

V T = D�1UTX

= D�1UT [X1|X2| · · · |Xr]

=
⇥
D�1UTX1|D�1UTX2| · · · |D�1UTXr

⇤

=
⇥
V T
1 |V T

2 | · · · |V T
r

⇤

16 Intel® HPC Developer Conference 2017

Interactive Speeds with pbdR on KNL Cluster

Tall and Skinny
300 GiB Matrix SVD

Cray XC40 with KNL

17 Intel® HPC Developer Conference 2017

K-means Experiments on One KNL Node

●

●

●

●

●

●

●

0

500

1000

1500

0 20 40 60
Cores

R
un

 T
im

e
(S

ec
on

ds
)

k−means with R on Intel KNL

●
●

●

●

●

●

●

0

20

40

60

0 20 40 60
Cores

Sp
ee

du
p

R
el

at
ive

 to
 1

 C
or

e

18 Intel® HPC Developer Conference 2017Intel® HPC Developer Conference 2017

• pbdPROF

– Brings fpmpi and mpiP profiling to R code

• pbdPAPI

– Brings PAPI (and IPCM) capabilities to measure R code

• hpcvis

– Graphics and analytics for fpmpi and mpiP data

– Graphics and analytics for pbdPAPI data objects

• Schmidt, Chen, Heckendorf, and Ostrouchov (2017) Analyzing Analytics: Advanced

Performance Analysis Tools for R

Performance Analysis Tools for R

19 Intel® HPC Developer Conference 2017Intel® HPC Developer Conference 2017

• pbdZMQ
– Wraps and provides ease of use for ZeroMQ communication library
– Includes a sufficient ZeroMQ distribution

• remoter
– control a remote R session from a local one
– Based on pbdZMQ
– Can use a relay

• getPass
– A portable way to read user input with masking

• pbdCS
– Utilities for interactive SPMD/MPI programming from an R session

New “Interactive SPMD” Client-Server

ZeroMQ

MPI or ZeroMQ

Thank you!

pbdR.org

