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From Methods and Batch Runs
to Interactive Software for Data Analysis

Thanks to Dirk Eddelbuettel for this slide idea and to John Chambers for providing the high-resolution scans of the covers of his books. 

Chambers. 
Computational 
Methods for Data 
Analysis. 
Wiley, 1977. 

Becker, Chambers, and 
Wilks. 
The New S Language. 
Chapman & Hall, 1988. 

Chambers and Hastie. 
Statistical Models in S. 
Chapman & Hall, 1992.

Chambers. 
Programming with Data.
Springer, 1998.

Chambers. 
Software for Data 
Analysis: 
Programming with R. 
Springer, 2008.
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The R Software for Data
Approaches Popularity of 

General Programming Languages

2016

2015

2014

2017 IEEE Spectrum’s Ranking of Programming Languages

2017



4 Intel® HPC Developer Conference 2017

Discovery Thrives on Diversity

4
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Resources for Learning R

• RStudio IDE

• Favorite book: The Art of R Programming by Norm Matloff:

• Short intro: R Language for Programmers by John Cook

• Longer intro: aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and 
Kevin Ushey

• Grammar of graphics ggplot2, tidyverse for data wrangling, and 
Advanced R by Hadley Wickham

• Help: Mailing list archives and the [R] stackoverflow tag.

• Distributed programming with big data in R: pbdR.org, and our paper in 
Big Data Research (Schmidt et al., 2016).

http://www.rstudio.com/products/rstudio-desktop/
http://nostarch.com/artofr.htm
http://www.johndcook.com/R_language_for_programmers.html
http://tim-smith.us/arrgh/
http://ggplot2.tidyverse.org/
http://tidyverse.org/index.html
http://adv-r.had.co.nz/
http://tolstoy.newcastle.edu.au/R/
http://stackoverflow.com/tags/r/info
http://pbdr.org/
http://dx.doi.org/10.1016/j.bdr.2016.10.002
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A Scalable Platform 
for Developing Interactive Big Data Analytics

July 6, 2016

“OLCF Researchers Scale R to Tackle Big Science Data Sets”
“for situations where one needs interactive near-real-time analysis, the pbdR 
approach is much better [than Apache Spark–like frameworks].” 
PCA of a 134 GB matrix:  “several hours on . . . Apache Spark, . . . less than a minute 
using R.”

Modern statistical algorithm   +   pbdR infrastructure   +   HPC Libraries   +    HPC Hardware

• Engage parallel math libraries at scale
• R language unchanged
• New distributed concepts
• New profiling capabilities
• New interactive SPMD parallel
• In-situ distributed capability
• In-situ staging capability via ADIOS
• 2016 ORNL Significant Event Award

http://pbdr.org

Schmidt, Chen, Matheson, and Ostrouchov (2017). Programming with BIG Data in R: Scaling Analytics from One to Thousands of Nodes, Big Data Research, 8, p.1-11.
Schmidt, Chen, and Ostrouchov (2016). Introducing a New Client/Server Framework for Big Data Analytics with the R Language. XSEDE16 Conference on Diversity, Big Data, 
and Science at Scale.

http://pbdr.org/
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Implementing Modern Statistical Algorithms:
Truncated SVD from Random Projections

Distributed Parallel Computing with R Outline

Truncated SVD from random projections1
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Prototype for Randomized SVD
Given an m ⇥ n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization U�V �, where U and V are orthonormal, and � is
nonnegative and diagonal.
Stage A:
1 Generate an n ⇥ 2k Gaussian test matrix �.
2 Form Y = (AA�)qA� by multiplying alternately with A and A�.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q�A.

5 Compute an SVD of the small matrix: B = �U�V �.

6 Set U = Q �U .
Note: The computation of Y in step 2 is vulnerable to round-o� errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A�; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error �A � QQ�A� does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method o�ers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this di�culty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually su�ces in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is e�cient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult + O(k2(m + n)),

where Tmult is the flop count of a matrix–vector multiply with A or A�. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m ⇥ n matrix. Select an exponent q
and a target number k of singular vectors, where 2 � k � 0.5 min{m, n}. Execute the
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Algorithm 4.3: Randomized Power Iteration
Given an m ⇥ n matrix A and integers � and q, this algorithm computes an
m ⇥ � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n ⇥ � Gaussian random matrix �.
2 Form the m ⇥ � matrix Y = (AA�)qA� via alternating application

of A and A�.
3 Construct an m ⇥ � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-o� errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m ⇥ n matrix A and integers � and q, this algorithm computes an
m ⇥ � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n ⇥ � standard Gaussian matrix �.
2 Form Y0 = A� and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form �Yj = A�Qj�1 and compute its QR factorization �Yj = �Qj
�Rj .

5 Form Yj = A �Qj and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with �A�. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) �A� is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A�. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m ⇥ n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product A�. When the test matrix

Serial R

1 randSVD <� f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <� mat r i x ( rnorm (n⇤2⇤k ) ,

nrow=n , n co l=2⇤k )
5 Y<� A %⇤% Omega
6 Q<� qr .Q( qr (Y) )
7 At <� t (A)
8 f o r ( i i n 1 : q )
9 {

10 Y<� At %⇤% Q
11 Q<� qr .Q( qr (Y) )
12 Y<� A %⇤% Q
13 Q<� qr .Q( qr (Y) )
14 }
15
16 ## Stage B
17 B<� t (Q) %⇤% A
18 U<� La . svd (B) $u
19 U<� Q %⇤% U
20 U[ , 1 : k ]
21 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing

approximate matrix decompositions SIAM Review 53 217–288

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science
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From Serial Pseudocode to Scalable Code 
and Benchmark Data in One Day!

Distributed Parallel Computing with R Outline

From serial pseudocode to parallel scalable code
in one day!

Parallel pbdR

1 randSVD <� f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <� ddmatrix(”rnorm”, nrow=n, ncol=2*k)
5 Y<� A %⇤% Omega
6 Q<� qr .Q( qr (Y) )
7 At <� t (A)
8 f o r ( i i n 1 : q )
9 {

10 Y<� At %⇤% Q
11 Q<� qr .Q( qr (Y) )
12 Y<� A %⇤% Q
13 Q<� qr .Q( qr (Y) )
14 }
15
16 ## Stage B
17 B<� t (Q) %⇤% A
18 U<� La . svd (B) $u
19 U<� Q %⇤% U
20 U[ , 1 : k ]
21 }

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

10

20

40

100

200

400

1 2 4 8 16 32 64 128
Cores

Ti
m

e 
(s

ec
on

ds
)

Algorithm
●

●

20 rSVD

Full SVD

100,000 x 1,000 matrix (.8 GB)

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science
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Microscopy Data PCA Benchmark (134 GB) 
with rsvd

Distributed Parallel Computing with R Outline

Big Benchmark (134 GB) on Big Clusters
rpca centers, optionally scales, and uses rsvd

fastpca.R

1 suppressPackageStartupMessages(library(rhdf5))
2 suppressPackageStartupMessages(library(pbdIO))
3 suppressPackageStartupMessages(library(pbdML))
4 init.grid( )
5
6 var <- "your_hdf5_full_variable_name"
7 h5f <- H5Fopen( "your_hdf5_file_name" )
8 h5d <- H5Dopen( h5f , var )
9 h5s <- H5Dget_space( h5d )

10 dims <- H5Sget_simple_extent_dims( h5s )$size
11 rows <- dims [2] # row -major to column -major
12 cols <- dims [1] # because data written by C/Py
13
14 ## read C/Py -written blocks of rows into R blocks of columns
15 my_rows <- comm.chunk(rows , form="vector", type="equal")
16 A <- t(h5read(h5f , var , index=list(NULL , my_rows)))
17
18 ## add glue to make a global column -block ddmatrix
19 A <- new("ddmatrix", Data=A, dim=c(rows , cols), ldim=dim(A), bldim=dim(A), ICTXT =2)
20
21 ## rearrange into block -cyclic
22 A <- as.blockcyclic( A )
23
24 ## get 32 top singular values and vectors
25 Res <- rpca( A, k = 32 )
26
27 ## print the singular values
28 comm.print( Res$d )
29
30 finalize ()

http://pbdr.org ppppppbbbbbbddddddRRRRRR Core Team Using R for HPC Data Science
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Microscopy Data PCA Benchmark (134 GB)
Distributed Parallel Computing with R Outline

Big Benchmark (134 GB) on Big Clusters
host: eos host: rhea host: titan
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• For skinny matrices, horizontal or vertical
• Especially useful when only top singular vectors needed
• Relies on allreduce and a small SVD
• Interactive speeds for TB-size data

New Developments for Skinny Matrices:           
shaq Matrix in kazaam Package

m⇥ n X = UDV T

m � n XTX = V DUTUDV T = V D2V T

U = XVD�1

m ⌧ n XXT = UDV TV DUT = UD2UT

V T = D�1UTX

n ✕ n

m ✕ m
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Wide – Distributed by Column Blocks

X = [X1|X2| · · · |Xr]

XXT = [X1|X2| · · · |Xr]
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Interactive Speeds with pbdR on KNL Cluster

Tall and Skinny
300 GiB Matrix SVD

Cray XC40 with KNL
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K-means Experiments on One KNL Node
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• pbdPROF

– Brings fpmpi and mpiP profiling to R code

• pbdPAPI

– Brings PAPI (and IPCM) capabilities to measure R code

• hpcvis

– Graphics and analytics for fpmpi and mpiP data

– Graphics and analytics for pbdPAPI data objects

• Schmidt, Chen, Heckendorf, and Ostrouchov (2017) Analyzing Analytics: Advanced 

Performance Analysis Tools for R

Performance Analysis Tools for R
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• pbdZMQ
– Wraps and provides ease of use for ZeroMQ communication library
– Includes a sufficient ZeroMQ distribution

• remoter
– control a remote R session from a local one
– Based on pbdZMQ
– Can use a relay

• getPass
– A portable way to read user input with masking

• pbdCS
– Utilities for interactive SPMD/MPI programming from an R session

New “Interactive SPMD” Client-Server

ZeroMQ

MPI or ZeroMQ



Thank you!

pbdR.org


